Fold Problem. A sheet of paper has a height H and width W. One corner is folded so that the tip of the fold just touches the opposite side. Show that the minimum length of the fold equals $\frac{3\sqrt{3}\,W}{4}$.

The figure suggests one way to approach this problem. The length of the fold (z) is the hypotenuse of the right triangle 123. The Pythagorean relation for the triangle is

$$z^2 = x^2 + y^2$$

The plan is to figure out relations that let us express x and y in terms of the angle θ . Then we can use a derivative to find the value of θ that minimizes z.

Two other right triangles are key to the solution.

The triangles 243 and 152 are similar.

To prove this show that the angle θ (234) is equal to the angle 125. It follows that

$$\frac{W}{v} = \sin \theta$$
 $\frac{W-x}{x} = \cos \theta = \frac{W}{x} = 1 + \cos \theta$

These two equations let you express x and y in terms of $\boldsymbol{\theta}$. This in turn lets you express z^2 in terms of $\boldsymbol{\theta}$. What comes next? Set $(\frac{dz}{d\theta})=0$? That would work, but it leads to ugly equations. If z is a minimum $1/z^2$ is a maximum so setting the derivative of $1/z^2$ equal to zero finds the maximum of $1/z^2$ and thereby the minimum of z. This leads to a quadratic equation for $\cos \boldsymbol{\theta}$ that gives $\cos \boldsymbol{\theta} = \frac{1}{3}$. This makes $\sin \boldsymbol{\theta} = \frac{\sqrt{8}}{3}$ and $z = \frac{3\sqrt{3}\,W}{4}$. Done? Rework it. Express $1/z^2$ in terms of $t = \cos \boldsymbol{\theta}$. Differentiate $1/z^2$ with respect to t and solve for t. You get a quadratic with the solution t = 1/3. There's always a smoother way to solve a problem.

To prove that remark, here is yet another solution: The triangles 123 and 163 are congruent because they are opposite sides of the fold. Use this fact to show that the angles 213 and 316 equal $\theta/2$. This lets you write the equation

$$\frac{x}{z} = \sin(\theta/2)$$

Multiply this by a previous equation $\frac{W}{x} = (1 + \cos \theta)$. This eliminates x and gives an equation relating θ and z

$$\frac{w}{x} \frac{x}{z} = (1 + \cos \theta) \sin(\theta/2) = > \frac{w}{z} = (1 + \cos \theta) \sin(\theta/2)$$

Use the double angle formula to replace $(1 + \cos \theta)$ by $2[\cos(\theta/2)]^2$

$$\frac{W}{Z} = 2[\cos(\boldsymbol{\theta}/2)]^2 \sin(\boldsymbol{\theta}/2) = 2(1 - [\sin(\boldsymbol{\theta}/2)]^2) \sin(\boldsymbol{\theta}/2)$$

Setting $sin(\theta/2) = s$ converts this to

$$\frac{W}{z} = 2s(1-s^2) = 2(s-s^3)$$

Setting the derivative of $\frac{W}{z}$ equal to zero locates the

maximum of $\frac{W}{z}$ and the minimum of z. This gives

$$1 - 3s^2 = 0$$
 => $s^2 = 1/3$

Plugging this back into

$$\frac{W}{z} = 2s(1-s^2)$$

gives the minimum value, $z = \frac{3\sqrt{3} W}{4} = 1.299 W$

I discovered this problem online in a group posted by Professor Duane Kouba kouba@math.ucdavis.edu. It is different than the typical max-min problem. Notice that the solution does not depend on the height of the paper (H). This becomes more apparent after you have solved the problem. Attempting to find a solution using the height H introduces a red herring – and leads you astray.

All done? Not quite. There is still an unanswered question. Why should there be a minimum? It's not hard to see that the fold gets longer as θ is made smaller. It's easy to use a sheet of paper to convince yourself that the fold gets longer and longer as θ approaches zero. The other limiting value of θ is 90 degrees and this leads to z = $\sqrt{2}$ W = 1.414 W which is not much greater than the minimum value 1.299 W. So.... the question is this:

Is there an **intuitive** reason that explains why there is a minimum?

Your insights will be welcomed. don@donckelly.com

The current answer to the question above is "sort of", but not a satisfying one.

To complete the record, here is a third solution, the first one I cobbled together.

$$\frac{w}{y} = \sin \theta \qquad \frac{w - x}{x} = \cos \theta \implies \frac{w}{x} = 1 + \cos \theta$$

$$z^{2} = x^{2} + y^{2} = x^{2} \{1 + (y/x)^{2}\} = x^{2} \{1 + \frac{(1 + \cos \theta)^{2}}{[\sin \theta]^{2}}\} = x^{2} \{\frac{2(1 + \cos \theta)}{[\sin \theta]^{2}}\} = x^{2} \{\frac{2}{(1 - \cos \theta)}\}$$

$$z^{2} = \frac{2x^{2}}{(2 - \frac{w}{x})}$$

If z is a minimum so also is z^2 . Setting the derivative of z^2 to zero gives

$$\frac{4x - 3W}{(2 - \frac{W}{x})^2} = 0$$
 => $x = \frac{3W}{4}$

Plug in $x = \frac{3W}{4}$ to get the minimum value of z^2

$$z^2 = \frac{27}{16} w^2 \implies z = \frac{3\sqrt{3} w}{4}$$

From $\frac{W}{x} = 1 + \cos \theta$ it follows that $\cos \theta = 1/3$ and $\theta \approx 70.5$ degrees.